completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility any gases that contain NO_X , expressed as NO_2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ngJ heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue, or gaseous fossil fuel and wood residue. (3) 300 ng/J heat input (0.70 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood residue (except lignite or a solid fossil fuel containing 25 percent, by weight, or more of coal refuse). (4) 260 ng/J heat input (0.60 lb MMBtu) derived from lignite or lignite and wood residue (except as provided under paragraph (a)(5) of this section). (5) 340 ngJ heat input (0.80 lb MMBtu) derived from lignite which is mined in North Dakota, South Dakota, or Montana and which is burned in a cyclone-fired unit. (b) Except as provided under paragraphs (c), (d), and (e) of this section, when different fossil fuels are burned simultaneously in any combination, the applicable standard (in ng/J) is determined by proration using the following formula: $$PS_{NO_X} = \frac{w (260) + x (86) + y (130) + z (300)}{(w + x + y + z)}$$ Where: PS_{NOX} = Prorated standard for NO_X when burning different fuels simultaneously, in ng/J heat input derived from all fossil fuels fired or from all fossil fuels and wood residue fired; $w = Percentage \ of \ total \ heat \ input \ derived \\ from \ lignite;$ x = Percentage of total heat input derived from gaseous fossil fuel; y = Percentage of total heat input derived from liquid fossil fuel; and z = Percentage of total heat input derived from solid fossil fuel (except lignite). (c) When a fossil fuel containing at least 25 percent, by weight, of coal refuse is burned in combination with gaseous, liquid, or other solid fossil fuel or wood residue, the standard for NO_X does not apply. (d) Except as provided under paragraph (e) of this section, cyclone-fired units which burn fuels containing at least 25 percent of lignite that is mined in North Dakota, South Dakota, or Montana remain subject to paragraph (a)(5) of this section regardless of the types of fuel combusted in combination with that lignite. (e) As an alternate to meeting the requirements of paragraphs (a), (b), and (d) of this section, an owner or operator can petition the Administrator (in writing) to comply with §60.44Da(e)(3) of subpart Da of this part. If the Administrator grants the petition, the source will from then on (unless the unit is modified or reconstructed in the future) have to comply with the requirements in \$60.44Da(e)(3) of subpart Da of this part. ### § 60.45 Emissions and fuel monitoring. (a) Each owner or operator shall install, calibrate, maintain, and operate continuous opacity monitoring system (COMS) for measuring opacity and a CEMS for measuring SO_2 emissions, NO_X emissions, and either oxygen (O_2) or carbon dioxide (CO_2) except as provided in paragraph (b) of this section. (b) Certain of the CEMS requirements under paragraph (a) of this section do not apply to owners or operators under the following conditions: (1) For a fossil-fuel-fired steam generator that burns only gaseous or liquid fossil fuel (excluding residual oil) with potential SO_2 emissions rates of 26 ng/J (0.060 lb/MMBtu) or less and that does not use post-combustion technology to reduce emissions of SO_2 or PM, CEMS for measuring the opacity of emissions and SO_2 emissions are not required if the owner or operator monitors SO_2 emissions by fuel sampling and analysis or fuel receipts. - (2) For a fossil-fuel-fired steam generator that does not use a flue gas desulfurization device, a CEMS for measuring SO_2 emissions is not required if the owner or operator monitors SO_2 emissions by fuel sampling and analysis. - (3) Notwithstanding §60.13(b), installation of a CEMS for NO_X may be delayed until after the initial performance tests under §60.8 have been conducted. If the owner or operator demonstrates during the performance test that emissions of NO_X are less than 70 percent of the applicable standards in §60.44, a CEMS for measuring NO_X emissions is not required. If the initial performance test results show that NO_X emissions are greater than 70 percent of the applicable standard, the owner or operator shall install a CEMS for NO_X within one year after the date of the initial performance tests under §60.8 and comply with all other applicable monitoring requirements under this part. - (4) If an owner or operator does not install any CEMS for sulfur oxides and NO_X , as provided under paragraphs (b)(1) and (b)(3) or paragraphs (b)(2) and (b)(3) of this section a CEMS for measuring either O_2 or CO_2 is not required. - (5) An owner or operator may petition the Administrator (in writing) to install a PM CEMS as an alternative to the CEMS for monitoring opacity emissions. - (6) A CEMS for measuring the opacity of emissions is not required for a fossil fuel-fired steam generator that does not use post-combustion technology (except a wet scrubber) for reducing PM, SO₂, or carbon monoxide (CO) emissions, burns only gaseous fuels or fuel oils that contain less than or equal to 0.30 weight percent sulfur, and is operated such that emissions of CO to the atmosphere from the affected source are maintained at levels less than or equal to 0.15 lb/MMBtu on a boiler operating day average basis. Owners and operators of affected sources electing to comply with this paragraph must demonstrate compliance according to the procedures specified in paragraphs (b)(6)(i) through (iv) of this section. - (i) You must monitor CO emissions using a CEMS according to the proce- dures specified in paragraphs (b)(6)(i)(A) through (D) of this section. (A) The CO CEMS must be installed, certified, maintained, and operated according to the provisions in §60.58b(i)(3) of subpart Eb of this part. (B) Each 1-hour CO emissions average is calculated using the data points generated by the CO CEMS expressed in parts per million by volume corrected to 3 percent oxygen (dry basis). (C) At a minimum, valid 1-hour CO emissions averages must be obtained for at least 90 percent of the operating hours on a 30-day rolling average basis. The 1-hour averages are calculated using the data points required in §60.13(h)(2). (D) Quarterly accuracy determinations and daily calibration drift tests for the CO CEMS must be performed in accordance with procedure 1 in appendix F of this part. (ii) You must calculate the 1-hour average CO emissions levels for each boiler operating day by multiplying the average hourly CO output concentration measured by the CO CEMS times the corresponding average hourly flue gas flow rate and divided by the corresponding average hourly heat input to the affected source. The 24-hour average CO emission level is determined by calculating the arithmetic average of the hourly CO emission levels computed for each boiler operating day. (iii) You must evaluate the preceding 24-hour average CO emission level each boiler operating day excluding periods of affected source startup, shutdown, or malfunction. If the 24-hour average CO emission level is greater than 0.15 lb/MMBtu, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high emission incident and, take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to reduce the 24-hour average CO emission level to 0.15 lb/MMBtu or less. (iv) You must record the CO measurements and calculations performed according to paragraph (b)(6) of this section and any corrective actions taken. The record of corrective action taken must include the date and time during which the 24-hour average CO emission level was greater than 0.15 lb/MMBtu, and the date, time, and description of the corrective action. (7) The owner or operator of an affected facility subject to an opacity standard under §60.42 and that elects to not install a COMS because the affected facility burns only fuels as specified under paragraph (b)(1) of this section, monitors PM emissions as specified under paragraph (b)(5) of this section, or monitors CO emissions as specified under paragraph (b)(6) of this section shall conduct a performance test using Method 9 of appendix A-4 of this part and the procedures in §60.11 to demonstrate compliance with the applicable limit in \$60.42 and shall comply with either paragraphs (b)(7)(i), (b)(7)(ii), or (b)(7)(iii) of this section. If during the initial 60 minutes of observation all 6-minute averages are less than 10 percent and all individual 15second observations are less than or equal to 20 percent, the observation period may be reduced from 3 hours to 60 minutes. - (i) Except as provided in paragraph (b)(7)(ii) or (b)(7)(iii) of this section, the owner or operator shall conduct subsequent Method 9 of appendix A-4 of this part performance tests using the procedures in paragraph (b)(7) of this section according to the applicable schedule in paragraphs (b)(7)(i)(A) through (b)(7)(i)(D) of this section, as determined by the most recent Method 9 of appendix A-4 of this part performance test results. - (A) If no visible emissions are observed, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 12 calendar months from the date that the most recent performance test was conducted; - (B) If visible emissions are observed but the maximum 6-minute average opacity is less than or equal to 5 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 6 calendar months from the date that the most recent performance test was conducted; - (C) If the maximum 6-minute average opacity is greater than 5 percent but less than or equal to 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 3 calendar months from the date that the most recent performance test was conducted; or - (D) If the maximum 6-minute average opacity is greater than 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 30 calendar days from the date that the most recent performance test was conducted. - (ii) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 of this part performance test, elect to perform subsequent monitoring using Method 22 of appendix A-7 of this part according to the procedures specified in paragraphs (b)(7)(ii)(A) and (B) of this section. - (A) The owner or operator shall conduct 10 minute observations (during normal operation) each operating day the affected facility fires fuel for which an opacity standard is applicable using Method 22 of appendix A-7 of this part and demonstrate that the sum of the occurrences of any visible emissions is not in excess of 5 percent of the observation period (i.e., 30 seconds per 10 minute period). If the sum of the occurrence of any visible emissions is greater than 30 seconds during the initial 10 minute observation, immediately conduct a 30 minute observation. If the sum of the occurrence of visible emissions is greater than 5 percent of the observation period (i.e., 90 seconds per 30 minute period) the owner or operator shall either document and adjust the operation of the facility and demonstrate within 24 hours that the sum of the occurrence of visible emissions is equal to or less than 5 percent during a 30 minute observation (i.e., 90 seconds) or conduct a new Method 9 of appendix A-4 of this part performance test using the procedures in paragraph (b)(7) of this section within 30 calendar days according to the requirements in § 60.46(b)(3). - (B) If no visible emissions are observed for 30 operating days during which an opacity standard is applicable, observations can be reduced to once every 7 operating days during which an opacity standard is applicable. If any visible emissions are observed, daily observations shall be resumed. (iii) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 performance tests, elect to perform subsequent monitoring using a digital opacity compliance system according to a site-specific monitoring plan approved by the Administrator. The observations shall be similar, but not necessarily identical, to the requirements in paragraph (b)(7)(ii) of this section. For reference purposes in preparing the monitoring plan, see OAQPS "Determination of Visible Emission Opacity from Stationary Sources Using Computer-Based Photographic Analysis Systems." This document is available from the U.S. Environmental Protection Agency (U.S. EPA); Office of Air Quality and Planning Standards; Sector Policies and Programs Division; Measurement Policy Group (D243-02), Research Triangle Park, NC 27711. This document is also available on the Technology Transfer Network (TTN) under Emission Measurement Center Preliminary Methods. - (c) For performance evaluations under §60.13(c) and calibration checks under §60.13(d), the following procedures shall be used: - (1) Methods 6, 7, and 3B of appendix A of this part, as applicable, shall be used for the performance evaluations of SO_2 and NO_X continuous monitoring systems. Acceptable alternative methods for Methods 6, 7, and 3B of appendix A of this part are given in $\S 60.46(d)$. - (2) Sulfur dioxide or nitric oxide, as applicable, shall be used for preparing calibration gas mixtures under Performance Specification 2 of appendix B to this part. - (3) For affected facilities burning fossil fuel(s), the span value for a continuous monitoring system measuring the opacity of emissions shall be 80, 90, or 100 percent. For a continuous monitoring system measuring sulfur oxides or NO_X the span value shall be determined using one of the following procedures: - (i) Except as provided under paragraph (c)(3)(ii) of this section, SO_2 and NO_X span values shall be determined as follows: | Fossil fuel | In parts per million | | |-------------------------------|--|---| | | Span value for SO ₂ | Span value for NO _X | | Gas Liquid Solid Combinations | (1)
1,000
1,500
1,000y + 1,500z | 500.
500.
1,000.
500 (x + y) + 1,000z. | ¹ Not applicable. ### Where: - x = Fraction of total heat input derived from gaseous fossil fuel; - y = Fraction of total heat input derived from liquid fossil fuel; and - z = Fraction of total heat input derived from solid fossil fuel. - (ii) As an alternative to meeting the requirements of paragraph (c)(3)(i) of this section, the owner or operator of an affected facility may elect to use the SO_2 and NO_X span values determined according to sections 2.1.1 and 2.1.2 in appendix A to part 75 of this chapter. - (4) All span values computed under paragraph (c)(3)(i) of this section for - burning combinations of fossil fuels shall be rounded to the nearest 500 ppm. Span values that are computed under paragraph (c)(3)(ii) of this section shall be rounded off according to the applicable procedures in section 2 of appendix A to part 75 of this chapter. - (5) For a fossil-fuel-fired steam generator that simultaneously burns fossil fuel and nonfossil fuel, the span value of all CEMS shall be subject to the Administrator's approval. - (d) [Reserved] - (e) For any CEMS installed under paragraph (a) of this section, the following conversion procedures shall be used to convert the continuous monitoring data into units of the applicable standards (ng/J, lb/MMBtu): (1) When a CEMS for measuring O_2 is selected, the measurement of the pollutant concentration and O_2 concentration shall each be on a consistent basis (wet or dry). Alternative procedures approved by the Administrator shall be used when measurements are on a wet basis. When measurements are on a dry basis, the following conversion procedure shall be used: $$E = CF \left(\frac{20.9}{(20.9 - \%O_2)} \right)$$ Where E, C, F, and $\%O_2$ are determined under paragraph (f) of this section. (2) When a CEMS for measuring CO_2 is selected, the measurement of the pollutant concentration and CO_2 concentration shall each be on a consistent basis (wet or dry) and the following conversion procedure shall be used: $$E = CF_c \left(\frac{100}{\%CO_2} \right)$$ Where E, C, F_c and $\%CO_2$ are determined under paragraph (f) of this section. - (f) The values used in the equations under paragraphs (e)(1) and (2) of this section are derived as follows: - (1) E = pollutant emissions, ng/J (lb/MMBtu). - (2) C = pollutant concentration, ng/dscm (lb/dscf), determined by multiplying the average concentration (ppm) for each one-hour period by 4.15×10^4 M ng/dscm per ppm (2.59×10^{-9} M lb/dscf per ppm) where M = pollutant molecular weight, g/g-mole (lb/lb-mole). M = 64.07 for SO₂ and 46.01 for NO_X. - (3) $\%O_2$, $\%CO_2 = O_2$ or CO_2 volume (expressed as percent), determined with equipment specified under paragraph (a) of this section. - (4) F, F_c = a factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel combusted (F), and a factor representing a ratio of the volume of CO_2 generated to the calorific value of the fuel combusted (F_c), respectively. Values of F and F_c are given as follows: - (i) For anthracite coal as classified according to ASTM D388 (incorporated by reference, see §60.17), $F=2,723\times10^{-17}~dscm/J~(10,140~dscf/MMBtu)$ and $F_c=0.532\times10^{-17}~scm~CO_2/J~(1,980~scf~CO_2/MMBtu).$ - (ii) For subbituminous and bituminous coal as classified according to ASTM D388 (incorporated by reference, see §60.17), $F=2.637\times10^{-7}$ dscm/J (9,820 dscf/MMBtu) and $F_c=0.486\times10^{-7}$ scm CO₂/J (1,810 scf CO₂/MMBtu). - (iii) For liquid fossil fuels including crude, residual, and distillate oils, $F=2.476\times10^{-7}~dscm/J~(9,220~dscf/MMBtu)$ and $F_c=0.384\times10^{-7}~scm~CO_2/J~(1,430~scf~CO_2/MMBtu).$ - (iv) For gaseous fossil fuels, $F=2.347\times 10^{-7}$ dscm/J (8,740 dscf/MMBtu). For natural gas, propane, and butane fuels, $F_c=0.279\times 10^{-7}$ scm CO₂/J (1,040 scf CO₂/MMBtu) for natural gas, 0.322 \times 10⁻⁷ scm CO₂/J (1,200 scf CO₂/MMBtu) for propane, and 0.338 $\times 10^{-7}$ scm CO₂/J (1,260 scf CO₂/MMBtu) for butane. - (v) For bark $F=2.589\times10^{-7}~dscm/J$ (9,640 dscf/MMBtu) and $F_c=0.500\times10^{-7}~scm~CO_2/J~(1,840~scf~CO_2/MMBtu). For wood residue other than bark <math display="inline">F=2.492\times10^{-7}~dscm/J~(9,280~dscf/MMBtu)$ and $F_c=0.494\times10^{-7}~scm~CO_2/J~(1,860~scf~CO_2/MMBtu).$ - (vi) For lignite coal as classified according to ASTM D388 (incorporated by reference, see §60.17), $F=2.659\times10^{-7}$ dscm/J (9,900 dscf/MMBtu) and $F_c=0.516\times10^{-7}$ scm CO₂/J (1,920 scf CO₂/MMBtu). - (5) The owner or operator may use the following equation to determine an F factor (dscm/J or dscf/MMBtu) on a dry basis (if it is desired to calculate F on a wet basis, consult the Administrator) or Fc factor (scm CO₂/J, or scf CO₂/MMBtu) on either basis in lieu of the F or F_c factors specified in paragraph (f)(4) of this section: $$F = 10^{-6} \frac{[227.2 \text{ (\%H)} + 95.5 \text{ (\%C)} + 35.6 \text{ (\%S)} + 8.7 \text{ (\%N)} - 28.7 \text{ (\%O)}]}{GCV}$$ $$F_{c} = \frac{2.0 \times 10^{-5} (\%C)}{GCV (SI units)}$$ $$F = 10^{-6} \frac{[3.64 \text{ (\%H)} + 1.53 \text{ (\%C)} + 0.57 \text{ (\%S)} + 0.14 \text{ (\%N)} - 0.46 \text{ (\%O)}]}{\text{GCV (English units)}}$$ $$F_{c} = \frac{20.0 \text{ (\%C)}}{\text{GCV (SI units)}}$$ $$F_c = \frac{321 \times 10^3 \text{ (\%C)}}{\text{GCV (English units)}}$$ (i) %H, %C, %S, %N, and %O are content by weight of hydrogen, carbon, sulfur, nitrogen, and O_2 (expressed as percent), respectively, as determined on the same basis as GCV by ultimate analysis of the fuel fired, using ASTM D3178 or D3176 (solid fuels), or computed from results using ASTM D137, D1945, or D1946 (gaseous fuels) as applicable. (These five methods are incorporated by reference, see $\S 60.17$.) (ii) GVC is the gross calorific value (kJ/kg, Btu/lb) of the fuel combusted determined by the ASTM test methods D2015 or D5865 for solid fuels and D1826 for gaseous fuels as applicable. (These three methods are incorporated by reference, see §60.17.) (iii) For affected facilities which fire both fossil fuels and nonfossil fuels, the F or Fc value shall be subject to the Administrator's approval. (6) For affected facilities firing combinations of fossil fuels or fossil fuels and wood residue, the F or Fc factors determined by paragraphs (f)(4) or (f)(5) of this section shall be prorated in accordance with the applicable formula as follows: $$F = \sum_{i=1}^{n} X_{i} F_{i} \quad \text{or} \quad F_{c} = \sum_{i=1}^{n} X_{i} (F_{c})_{i}$$ Where: X_i = Fraction of total heat input derived from each type of fuel (e.g. natural gas, bituminous coal, wood residue, etc.); § 60.45 F_i or $(F_c)_i$ = Applicable F or F_c factor for each fuel type determined in accordance with paragraphs (f)(4) and (f)(5) of this section; and n = Number of fuels being burned in combination. (g) Excess emission and monitoring system performance reports shall be submitted to the Administrator semi-annually for each six-month period in the calendar year. All semiannual reports shall be postmarked by the 30th day following the end of each six-month period. Each excess emission and MSP report shall include the information required in §60.7(c). Periods of excess emissions and monitoring systems (MS) downtime that shall be reported are defined as follows: (1) Opacity. Excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 20 percent opacity, except that one six-minute average per hour of up to 27 percent opacity need not be reported. (i) For sources subject to the opacity standard of §60.42(b)(1), excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 35 percent opacity, except that one six-minute average per hour of up to 42 percent opacity need not be reported. - (ii) For sources subject to the opacity standard of §60.42(b)(2), excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 32 percent opacity, except that one six-minute average per hour of up to 39 percent opacity need not be reported. - (2) Sulfur dioxide. Excess emissions for affected facilities are defined as: - (i) For affected facilities electing not to comply with \$60.43(d), any three-hour period during which the average emissions (arithmetic average of three contiguous one-hour periods) of SO_2 as measured by a CEMS exceed the applicable standard in \$60.43; or - (ii) For affected facilities electing to comply with \$60.43(d), any 30 operating day period during which the average emissions (arithmetic average of all one-hour periods during the 30 operating days) of SO_2 as measured by a CEMS exceed the applicable standard in \$60.43. Facilities complying with the 30-day SO_2 standard shall use the most current associated SO_2 compliance and monitoring requirements in \$\$60.48Da and 60.49Da of subpart Da of this part or \$\$60.45b and 60.47b of subpart Db of this part, as applicable. - (3) Nitrogen oxides. Excess emissions for affected facilities using a CEMS for measuring NO_X are defined as: - (i) For affected facilities electing not to comply with §60.44(e), any three-hour period during which the average emissions (arithmetic average of three contiguous one-hour periods) exceed the applicable standards in §60.44; or - (ii) For affected facilities electing to comply with \$60.44(e), any 30 operating day period during which the average emissions (arithmetic average of all one-hour periods during the 30 operating days) of NO_X as measured by a CEMS exceed the applicable standard in \$60.44. Facilities complying with the 30-day NO_X standard shall use the most current associated NO_X compliance and monitoring requirements in \$\$60.48Da and 60.49Da of subpart Da of this part. - (4) Particulate matter. Excess emissions for affected facilities using a CEMS for measuring PM are defined as any boiler operating day period during which the average emissions (arithmetic average of all operating one-hour periods) exceed the applicable standards in §60.42. Affected facilities using PM CEMS must follow the most current applicable compliance and monitoring provisions in §§60.48Da and 60.49Da of subpart Da of this part. - (h) The owner or operator of an affected facility subject to the opacity limits in $\S 60.42$ that elects to monitor emissions according to the requirements in $\S 60.45(b)(7)$ shall maintain records according to the requirements specified in paragraphs (h)(1) through (3) of this section, as applicable to the visible emissions monitoring method used. - (1) For each performance test conducted using Method 9 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (h)(1)(i) through (iii) of this section. - (i) Dates and time intervals of all opacity observation periods; - (ii) Name, affiliation, and copy of current visible emission reading certification for each visible emission observer participating in the performance test; and - $\begin{tabular}{ll} \hbox{(iii) Copies of all visible emission observer opacity field data sheets;} \end{tabular}$ - (2) For each performance test conducted using Method 22 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (h)(2)(i) through (iv) of this section. - (i) Dates and time intervals of all visible emissions observation periods; - (ii) Name and affiliation for each visible emission observer participating in the performance test; - (iii) Copies of all visible emission observer opacity field data sheets; and - (iv) Documentation of any adjustments made and the time the adjustments were completed to the affected facility operation by the owner or operator to demonstrate compliance with the applicable monitoring requirements. - (3) For each digital opacity compliance system, the owner or operator shall maintain records and submit reports according to the requirements specified in the site-specific monitoring plan approved by the Administrator. $[60\ FR\ 65415,\ Dec.\ 19,\ 1995,\ as\ amended\ at\ 74\ FR\ 5077,\ Jan.\ 28,\ 2009]$ # $\S 60.46$ Test methods and procedures. - (a) In conducting the performance tests required in §60.8, and subsequent performance tests as requested by the EPA Administrator, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b). Acceptable alternative methods and procedures are given in paragraph (d) of this section. - (b) The owner or operator shall determine compliance with the PM, SO_2 , and NO_X standards in §§ 60.42, 60.43, and 60.44 as follows: - (1) The emission rate (E) of PM, SO_2 , or NO_X shall be computed for each run using the following equation: $$E = CF_d \left(\frac{20.9}{(20.9 - \%O_2)} \right)$$ Where: - E = Emission rate of pollutant, ng/J (1b/million Btu); - C = Concentration of pollutant, ng/dscm (1b/ dscf); - $%O_2 = O_2$ concentration, percent dry basis; and - F_d = Factor as determined from Method 19 of appendix A of this part. - (2) Method 5 of appendix A of this part shall be used to determine the PM concentration (C) at affected facilities without wet flue-gas-desulfurization (FGD) systems and Method 5B of appendix A of this part shall be used to determine the PM concentration (C) after FGD systems. - (i) The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf). The probe and filter holder heating systems in the sampling train shall be set to provide an average gas temperature of 160±14 °C (320±25 °F). - (ii) The emission rate correction factor, integrated or grab sampling and analysis procedure of Method 3B of appendix A of this part shall be used to determine the O_2 concentration ($\%O_2$). The O_2 sample shall be obtained simultaneously with, and at the same traverse points as, the particulate sample. If the grab sampling procedure is used, the O_2 concentration for the run shall be the arithmetic mean of the sample O_2 concentrations at all traverse points. - (iii) If the particulate run has more than 12 traverse points, the O_2 traverse points may be reduced to 12 provided that Method 1 of appendix A of this part is used to locate the 12 O_2 traverse points. - (3) Method 9 of appendix A of this part and the procedures in §60.11 shall be used to determine opacity. - (4) Method 6 of appendix A of this part shall be used to determine the SO_2 concentration. - (i) The sampling site shall be the same as that selected for the particulate sample. The sampling location in the duct shall be at the centroid of the cross section or at a point no closer to the walls than 1 m (3.28 ft). The sampling time and sample volume for each sample run shall be at least 20 minutes and 0.020 dscm (0.71 dscf). Two samples shall be taken during a 1-hour period, with each sample taken within a 30-minute interval. - (ii) The emission rate correction factor, integrated sampling and analysis procedure of Method 3B of appendix A of this part shall be used to determine the O_2 concentration (% O_2). The O_2 sample shall be taken simultaneously with, and at the same point as, the SO_2 sample. The SO_2 emission rate shall be computed for each pair of SO_2 and O_2 samples. The SO_2 emission rate (E) for each run shall be the arithmetic mean of the results of the two pairs of samples. - (5) Method 7 of appendix A of this part shall be used to determine the $NO_{\rm X}$ concentration. - (i) The sampling site and location shall be the same as for the SO_2 sample. Each run shall consist of four grab samples, with each sample taken at about 15-minute intervals. - (ii) For each NO_X sample, the emission rate correction factor, grab sampling and analysis procedure of Method 3B of appendix A of this part shall be used to determine the O_2 concentration